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1 Preface

This paper distills the knowledge on Principal Component Analysis gained after
reading about it for a long time now. The concept has been explained in depth
mathematically by taking an example.

2 Introduction

Principal Component Analysis is the oldest and the most widely used statistical
multivariate technique which finds a pattern in the data under consideration. It
can be further extended towards dimensionality reduction by extracting impor-
tant features which are necessary and ignoring the ones which aren’t. It find’s
its application in face recognition, compression, neuroscience etc

3 One Dimensional Dataset

3.1 Mean

Consider a random one dimensional dataset X with n number of data.

X = 5, 2, 3, 9, 1, 4

The mean of X is given by the formula

X̄ =

∑n
i=1Xi

n

Mean gives the center point of the dataset or the average of the entire dataset.
Thus the mean, X̄ for the considered example dataset will be equal to 4.

Consider another random one dimensional dataset Y

Y = 5, 3, 2, 7, 2, 5

The mean, Ȳ of this dataset is also 4. The mean of both the datasets
considered are the same but it is clear that the data are different and also
it varies differently. The math concept which defines the variation of data is
standard deviation.

3.2 Standard Deviation

Standard Deviation is a measure that is used to study the amount of variation
or dispersion of a set of data values with respect to it’s mean. For the X dataset,
standard deviation is given by the formula

SD =

√∑n
i=1 (Xi − X̄)2

(n− 1)

(n− 1) is Bessel’s correction and is applied to yield a better answer.
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3.3 Variance

Variance is the square of standard deviation.

var = SD2

or

var =

∑n
i=1 (Xi − X̄)2

(n− 1)

3.4 Conclusion

The variance of X is 8 and that of Y is 4. Which infers that the data of X is
more varied or spread across than the data of Y .

4 Two Dimensional Dataset

Consider a two dimensional dataset, (X,Y )

Table 1: Two Dimensional Dataset

X Y
2 1
3 4
5 8
7 7
2 1
1 3

By applying the same concepts as applied in 3, the following results are ob-
tained.
Mean of X, X̄ = 3.3335 Mean of Y, Ȳ = 4.0 Variance of X, Xvar = 5.0667
Variance of Y, Yvar = 8.8

The above discuss about the dataset itself and not about it’s variation or
relation with another dataset. The two datasets are compared or analyzed with
a parameter called as Covariance.

4.1 Covariance

Covariance is similar to variance but between two parameters and not with
itself. Hence defined as

cov(X,Y ) =

∑n
i=1 (Xi − X̄)(Yi − Ȳ )

(n− 1)

Rewriting the above formula for cov(X,X)
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cov(X,X) =

∑n
i=1 (Xi − X̄)(Xi − X̄)

(n− 1)

or

cov(X,X) =

∑n
i=1 (Xi − X̄)2

(n− 1)

which is same as the variance of X.

For the above considered example the covariance is, cov(X,Y ) = 5.6
The same can be represented in a matrix. This matrix called as the variance-
covariance matrix.

4.2 Variance-Covariance Matrix

The matrix is depicted as

(
cov(X,X) cov(X,Y )
cov(Y,X) cov(Y, Y )

)
Here,
cov(X,X) = Xvar

cov(Y, Y ) = Yvar
cov(X,Y ) = cov(Y,X)
Thus, The variance-covariance matrix can be re-written as(

Xvar cov(X,Y )
cov(X,Y ) Yvar

)
Substituting the values as calculated before we get the variance-covariance

matrix for the example dataset (X,Y ) as(
5.0667 5.6

5.6 8.8

)
To extract the principal information content from the datasets or to know

which dataset has the most part of information, eigen values and eigen vectors
are calculated.

4.3 Eigen Values and Eigen Vectors

Consider a set of vectors ~v1 , ~v2 , ~v3 ... which contains a special vector ~ve such
that when a transformation is applied the vector does not go any changes but
is just scaled.

T (~ve ) = λ× ~ve
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Here λ is the scaling factor and is defined as the eigen value. The vector ~ve
which remains unchanged is the eigen vector. For the above example (X,Y ),
Eigen values are (

1.03041503
12.83625163

)
and the eigen vectors are(

−0.81124219 0.58471028
0.58471028 0.81124219

)
The two eigen vectors obtained are always perpendicular to one another.

4.4 Principal Component

Principal Component is the eigen vector with the highest eigen value of the data
under consideration. It can also be understood as the eigen vector which has
been scaled more than the other eigen vectors. This forms the basis of PCA.

In the example the second eigen vector becomes the principal component as
it has a higher eigen value of 12.83625 thus we write a feature matrix for the
data set containing the eigen vectors in order of higest to lowest importance.
Thus, (

0.58471028 −0.81124219
0.81124219 0.58471028

)
This matrix is defined as feature matrix denoted as featuremat.

4.5 Final Transformed Data

The final transformed dataset is denoted as Findata. The transpose of feauturemat
is taken so that the highest eigen vector comes to the first row and the next
highest to the second row and so on. Now featuremat becomes(

0.58471028 0.81124219
−0.81124219 0.58471028

)
To make the dataset (X,Y) zero mean, we subtract the dataset with their

respective mean as shown in Table 3 i.e. X − X̄ and i.e. Y − Ȳ
The zero mean dataset obtained is represented in a matrix and denoted as

datam 
−1.33333 −3
−0.33333 0
1.66667 4
3.66667 3
−1.33333 −3
−2.33333 −1
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Table 2: Dataset (X,Y)

X Y
2 1
3 4
5 8
7 7
2 1
1 3

Table 3: Dataset(X,Y) - Mean

X Y
-1.33333 -3
-0.33333 0
1.66667 4
3.66667 3
-1.33333 -3
-2.33333 -1

Figure 1: Plot of Dataset(X,Y) Figure 2: Plot of Dataset(X,Y) - Mean

Figure 3: Plot of Dataset with it’s Eigen Vectors
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The transpose of the datam is taken only if the first column contains the
first dataset and second in the second dataset so when transpose is taken first
row will have the first dataset, second row the second dataset and so on. Hence
taking transpose of datam

(
−1.33333 −0.33333 1.66667 3.66667 −1.33333 −2.33333
−3 0 4 3 −3 −1

)
The final transformed data is defined as,

Findata = featuremat× datam
Thus we get the final transformed data. In this case Findata is(

−3.2133 −0.1949 4.219 4.5777 −3.2133 −2.1756
−0.6725 0.2704 0.9868 −1.2204 −0.6725 1.3082

)
This is final data obtained.

Figure 4: Plot of Final Transformed Data

4.6 Dimensionality Reduction

To reduce a dimension that is to make a two dimensional data into one dimen-
sional data, The highest eigen vector in the feature matrix is considered and
the other eigen vector is ignored and steps are continued by considering only
one eigen vector thus the Findata obtained when only the highest eigen vector
is considered,(

−3.2133 −0.1949 4.219 4.5777 −3.2133 −2.1756
)

This is otherwise called as data reduction or compression.
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4.7 Conclusion

By comparing the plots 3 and 4 we can conclude that upon principal component
analysis the data set taken into consideration will change its axis into the eigen
vector with the highest eigen value this can be observed from the plots. Hence
highlighting the highest information content along the axes. Further upon di-
mensionality reduction the two dimensional dataset changes to one dimensional
dataset as only one eigen vector was taken and when plotted the data will be
on just one axes or on the eigen vector with the highest eigen value.

5 Multi Dimensional Dataset

For Multi dimensional data say (A,B,C, ....). Everything is similar to two di-
mensional dataset but while considering eigenvectors to obtain the final trans-
formed data one has to consider the vectors according to the problem statement
or based on the desired reduction in data.

6 Reconstruction

To obtain back the original data, datam from the final transformed data the
equation

Findata = featuremat× datam

can be rewritten as

datam = featuremat−1 × Findata

feauturemat contains the eigen vectors. If these vectors are unit vectors
then the inverse of the matrix is nothing but the transpose of the matrix. But
if it is not then the above statement is not true. But in most of the cases the
output of most of the math libraries are unit eigen vectors. Now the equation
becomes

datam = featurematT × Findata

But datam is zero mean data i.e. mean subtracted data. Hence,

datam = Originaldata−Mean

Substituting this in the previous equation

Originaldata−Mean = featuremat−1 × Findata

Thus Originaldata is expressed as

Originaldata = (featuremat−1 × Findata) +Mean
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